On the Non-Existence of Blockwise 2-Local PRGs with Applications to Indistinguishability Obfuscation
نویسندگان
چکیده
Lin and Tessaro (Eprint 2017/250) recently proposed indistinguishability obfuscation and functional encryption candidates and proved their security based on a standard assumption on bilinear maps and a non-standard assumption on “Goldreich-like” pseudorandom generators (PRG). In a nutshell, they require the existence of pseudo-random generatorsG : Σ → {0, 1}m for some poly(n)-size alphabet Σ where each output bit depends on at most two input alphabet symbols, and which achieve sufficiently large stretch. We show a polynomial-time attack against such generators. Our attack uses tools from the literature on two-source extractors (Chor and Goldreich, SICOMP 1988) and efficient refutation of 2-CSPs over large alphabets (Allen, O’Donnell and Witmer, FOCS 2015). Finally, we propose new ways to instantiate the Lin-Tessaro construction that do not immediately fall to our attacks. While we cannot say with any confidence that these modifications are secure, they certainly deserve further cryptanalysis. ∗E-mail: [email protected]. Supported by an Akamai Presidential Fellowship. †E-mail: [email protected]. Research supported in part by NSF Grants CNS-1350619 and CNS-1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation, a Steven and Renee Finn Career Development Chair from MIT. This work was also sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
منابع مشابه
Indistinguishability Obfuscation from Trilinear Maps and Block-Wise Local PRGs
We consider the question of finding the lowest degree L for which L-linear maps suffice to obtain IO. The current state of the art (Lin, EUROCRYPT’16, CRYPTO ’17; Lin and Vaikunthanathan, FOCS’16; Ananth and Sahai, EUROCRYPT ’17) is that L-linear maps (under suitable security assumptions) suffice for IO, assuming the existence of pseudo-random generators (PRGs) with output locality L. However, ...
متن کاملIndistinguishability Obfuscation from DDH on 5-linear Maps and Locality-5 PRGs
We present a new construction of Indistinguishability Obfuscation (IO) from the following: • asymmetricL-linear maps [Boneh and Silverberg, Eprint 2002, Rothblum, TCC 2013] with subexponential Decisional Diffie-Hellman (DDH) assumption, • locality-L polynomial-stretch pseudorandom generators (PRG) with subexponential security, and • the subexponential hardness of Learning With Errors (LWE). Whe...
متن کاملThere is no Indistinguishability Obfuscation in Pessiland
We show that if NP , co−RP then the existence of efficient indistinguishability obfuscation (iO) implies the existence of one-way functions. Thus, if we live in “Pessiland”, where NP problems are hard on the average but one-way functions do not exist, or even in “Heuristica”, where NP problems are hard in the worst case but easy on average, then iO is impossible. Our result makes it redundant t...
متن کاملIndistinguishability Obfuscation from SXDH on 5-Linear Maps and Locality-5 PRGs
Two recent works [Lin, EUROCRYPT 2016, Lin and Vaikuntanathan, FOCS 2016] showed how to construct Indistinguishability Obfuscation (IO) from constant degree multilinear maps. However, the concrete degrees of multilinear maps used in their constructions exceed 30. In this work, we reduce the degree of multilinear maps needed to 5, by giving a new construction of IO from asymmetric L-linear maps ...
متن کاملPublic-Coin Differing-Inputs Obfuscation and Its Applications
Differing inputs obfuscation (diO) is a strengthening of indistinguishability obfuscation (iO) that has recently found applications to improving the efficiency and generality of obfuscation, functional encryption, and related primitives. Roughly speaking, a diO scheme ensures that the obfuscations of two efficiently generated programs are indistinguishable not only if the two programs are equiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017